The Feasibility Study

- What is a feasibility study?
- What to study and conclude?
- Types of feasibility
 - Technical
 - Economic
 - Schedule
 - Operational
- Quantifying benefits and costs
 - We have covered this already
- Comparing alternatives
Why a feasibility study?

Objectives:
- To find out if a civil engineering project can be done:
 - ...is it possible?
 - ...is it justified?
- To suggest possible alternative solutions.
- To provide management with enough information to know:
 - Whether the project can be done
 - Whether the final product will benefit its intended users
 - What the alternatives are (so that a selection can be made at a later phase)
 - Whether there is a preferred alternative

A management-oriented activity:
- After a feasibility study, management makes a “go/no-go” decision.
- Need to examine the problem in the context of broader objective/strategy
Content of a feasibility study

- **Things to be studied in the feasibility study:**
 - The present organizational system
 - Stakeholders, users, policies, functions, objectives,...
 - Problems with the present system
 - inconsistencies, inadequacies in functionality, performance,...
 - Goals and other requirements for the new system
 - Which problem(s) need to be solved?
 - What would the stakeholders like to achieve?
 - Constraints
 - including nonfunctional requirements on the system (preliminary pass)
 - Possible alternatives
 - “Sticking with the current system” is always an alternative
 - Different business processes for solving the problems
 - Advantages and disadvantages of the alternatives

- **Things to conclude:**
 - Feasibility of the project
 - The preferred alternative.
Four Types of feasibility

Technical feasibility
- Is the project possible with current technology?
- What technical risk is there?
- Availability of the technology:

Economic feasibility
- Is the project possible, given resource constraints?
- What are the benefits?
- What are the development and operational costs?
- Are the benefits worth the costs?

Schedule feasibility
- Is it possible to build a solution in time to be useful?

Operational feasibility
- If the system is developed, will it be used?
- Human and social issues...
(1) Technical Feasibility

- Is the proposed technology or solution practical?
 - Do we currently possess the necessary technology?
 - Do we possess the necessary technical expertise
 - ...and is the schedule reasonable for this team?
 - Is relevant technology mature enough to be easily applied to our problem?

- What kinds of technology will we need?
 - Some organizations like to use state-of-the-art technology
 - ...but most prefer to use mature and proven technology.
 - A mature technology has a larger customer base for obtaining advice concerning problems and improvements.

- Is the required technology available “in house”?
 - If the technology is available:
 - ...does it have the capacity to handle the solution?
 - If the technology is not available:
 - ...can it be acquired?
(2) Economic Feasibility *(covered earlier!!)*

Can the bottom line be quantified yet?

- Very early in the project...
 - a judgment of whether solving the problem is worthwhile.
- Once specific requirements and solutions have been identified...
 - ...the costs and benefits of each alternative can be calculated

Cost-benefit analysis

- Purpose - answer questions such as:
 - Is the project justified (i.e. will benefits outweigh costs)?
 - What is the minimal cost to attain a certain system?
 - How soon will the benefits accrue?
 - Which alternative offers the best return on investment?

Examples of things to consider:

- Selection among alternative financing arrangements (rent/lease/purchase)

Difficulties

- benefits and costs can both be intangible, hidden and/or hard to estimate
- ranking multi-criteria alternatives
(3) Schedule Feasibility

- How long will it take to get the technical expertise?
 - We may have the technology, but that doesn't mean we have the skills required to properly apply that technology.
 - Whether hiring or training, it will impact the schedule.

- Assess the schedule risk:
 - Given our technical expertise, are the project deadlines reasonable?
 - If there are specific deadlines, are they mandatory or desirable?
 - If the deadlines are not mandatory, the analyst can propose several alternative schedules.

- What are the real constraints on project deadlines?
 - If the project overruns, what are the consequences?
 - Deliver a properly functioning information system two months late...
 - ...or deliver an error-prone, useless information system on time?
 - Missed schedules are bad, but inadequate projects are worse!
(4) Operational Feasibility

- How do end-users/managers/policy-makers feel about...
 - ...the problem?
 - ...the alternative solutions you are exploring?

- You must evaluate:
 - Not just whether the project *can* work...
 - ...but also whether a system *will* work.

- Any solution might meet with resistance:
 - Does management support the project?
 - How do the end users feel about the project (often open public hearing for large scale civil engineering projects *after* technical feasibility)?
 - Inertia within existing system/ Vested interests?
 - People tend to resist change/other agenda.
 - Can this problem be overcome? If so, how?
Feasibility Study Structure

1. Purpose & scope of the study
 - Objectives (of the study)
 - who commissioned it & who did it,
 - sources of information,
 - process used for the study,
 - how long did it take,…

2. Description of present situation
 - organizational setting, current system(s).
 - Related factors and constraints.

3. Problems and requirements
 - What’s wrong with present situation?
 - What changes are needed?

4. Objectives of the new system.
 - Goals and relationships between them

5. Possible alternatives
 - …including ‘do nothing’.

6. Criteria for comparison
 - definition of the criteria

7. Analysis of alternatives
 - description of each alternative
 - evaluation with respect to criteria
 - cost/benefit analysis and special implications.

8. Recommendations
 - what is recommended and implications
 - what to do next;
 - E.g. an interim & a permanent solution

9. Appendices
 - to include any supporting material.
Comparing Alternatives

- How do we compare alternatives?
 - When there are multiple selection criteria?
 - When none of the alternatives is superior across the board?

- Use a Feasibility Analysis Matrix!
 - The columns correspond to the candidate solutions;
 - The rows correspond to the feasibility criteria;
 - The cells contain the feasibility assessment notes for each candidate;
 - Each row can be assigned a rank or score for each criterion
 - e.g., for operational feasibility, candidates can be ranked 1, 2, 3, etc.
 - A final ranking or score is recorded in the last row.

- Other evaluation criteria to be included in the matrix
 - quality of output
 - cost of maintenance
 - load on system

This section briefly discussed earlier!!